

Addition: Add two 2-digit numbers with regrouping.

Check with the school or the child if they use the term 'regrouping' or 'exchange'.

Pupils should be taught to add numbers using concrete objects, then with pictorial representations (diagrams), and then with symbols.

Column method with pictorial representation

As with the video below, if the child is ready, you can accelerate the process by using a pictorial representations and symbols together in column addition.

<https://www.youtube.com/watch?v=VPsYRPdIlpU&feature=youtu.be>

Once the child is really confident with the symbols together with the picture, they can progress to doing the column addition without any picture:

I have 48 pencils and 26 pens. How many altogether? $48 + 26 = ?$

Step 1 – write the sum in columns

	Tens	Ones
48	4	8
+26	2	6

Step 2 – add the ones

It is important you always start with ones, even when there is no regrouping.

	Tens	Ones
48	4	8
+26	2	6
		14

Step 3 – Regrouping (or exchange)

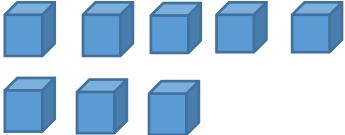
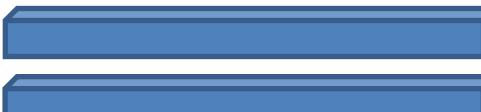
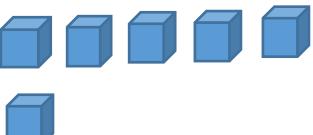
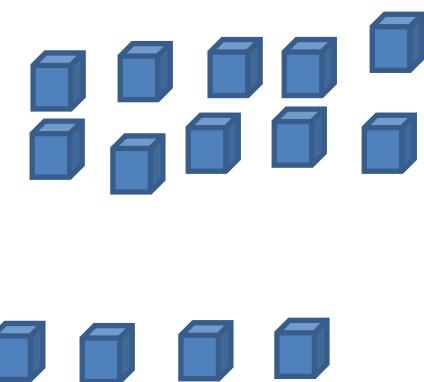
The ones column can have only 0 to 9, so partition 14 as 1 ten and 4 ones

	Tens	Ones
	1	
48	4	8
+26	2	6
Total		4

14

Step 4 –Add the tens

	Tens	Ones
	1	
48	4	8
+26	2	6
Total	7	4





So $48 + 26 = 74$

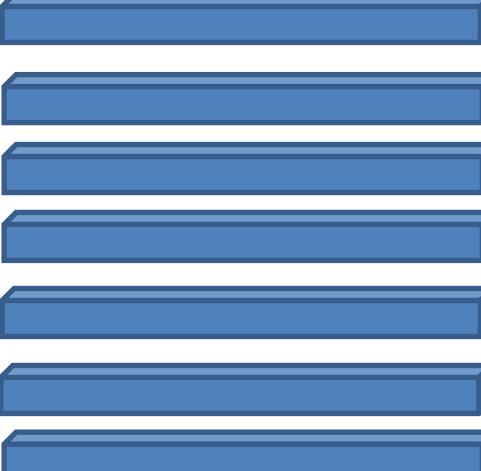
If the child needs more help, you can start with the Dienes as concrete objects as shown below

Use concrete objects - Dienes

I have 48 pencils and 26 pens. How many altogether? $48 + 26 = ?$

Partition 48 as 4 tens and 8 ones. Partition 26 as 2 tens and 6 ones.

Tens	Ones

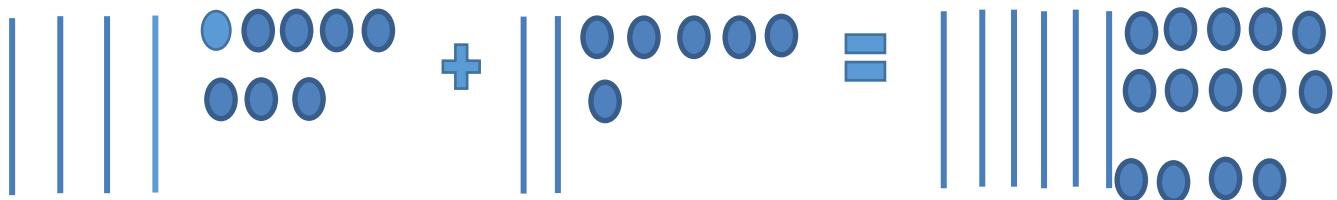

Add the ones 8 and 6 more makes 14 ones

This is bigger than 9 and the ones have to be 0 to 9 to be in the ones column.

The regrouping step (or exchange) is to partition 14 as 1 ten and 4 ones

The 4 ones can stay in the ones column

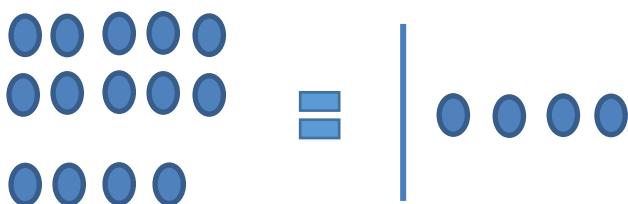
The 1 ten then is added to the 6 tens to make 7 tens which is 70. This gives


	4

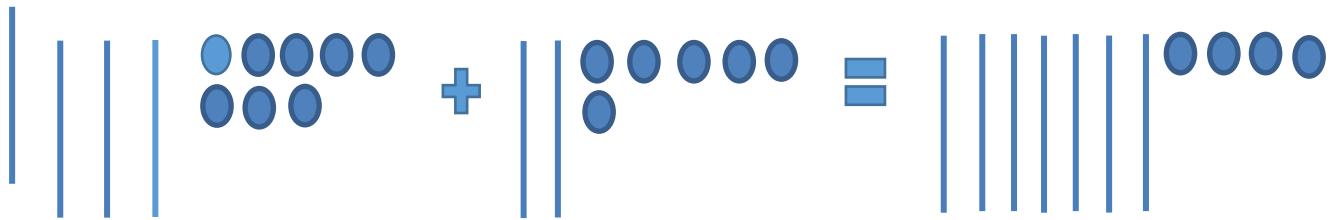
This makes 74

So $48 + 26 = 74$

Pictorial representation


As a next step, or if you do not have access to base ten/dienes equipment tens can be represented as a picture as below. A line is a ten and a square or circle is a one.

$$48 + 26 = 6 \text{ tens} + 14 \text{ ones}$$


To make a 2-digit number you need the ones to be from 0 to 9

So we exchange the 14 ones into a ten and some ones

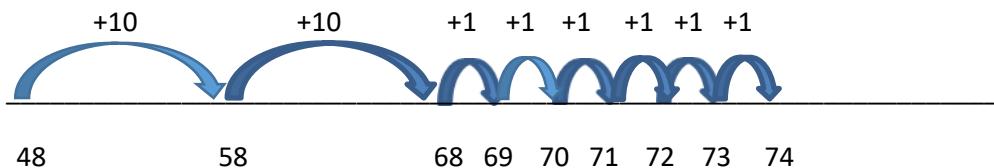
$$14 = 1 \text{ ten and 4 ones}$$

Exchanging this in the diagram above gives

$$\text{So } 48 + 26 = 74$$

Partitioning and jump counting

This is a completely different method to give the child a different way to work with symbols and a diagram.


You can use a 100 square to help with the jumps of 10. Help the child remember that adding ten on the 100 square means moving 1 row down – show that this is the same as counting on ten.

$$48 + 26 = 74$$

Put the bigger number first (48)

Partition the smaller number (26 = 20 + 6)

Count on: 48 + 20 + 6

If children are confident use more efficient jumps – for example count the 6 as 3 jumps of 2

Partitioning with no diagram

This is another different way for the child to work at adding using only symbols,

The child needs to be confident with each of the individual steps – otherwise the method will not be appropriate for them at this stage.

First show the method with no exchange, then repeat with an example that needs exchange,

$$43 + 24 = ?$$

Explain that you can do this by partitioning the numbers into tens and ones and then it is easy to add the tens and the ones separately.

Partition each number into tens and ones

$$43 = 40 + 3$$

$$24 = 20 + 4$$

The sum is $43 + 24$ which = $40 + 3 + 20 + 4$

Remember that the order doesn't matter in adding – you still get the same answer. ('Commutative')
So we can change the order to put the tens together and then the ones together

The sum is $40 + 3 + 20 + 4$ which = $40 + 20 + 3 + 4$

We can add the ones to give $3 + 4 = 7$

We can add the tens to give $40 + 20 = 60$

(Note: in the step above we are adding the ones first and then the tens, because this is the order that you have to use for column arithmetic. Although you can use either order here, it is better to keep the child accustomed to adding the ones first.)

The sum is $40 + 20 + 3 + 4$ which = $60 + 7$

This is an easy sum – you can see the total is 67

So $43 + 24 = 67$

Now do an example which needs regrouping

$$37 + 45 = ?$$

Remind the child that the addition is easier when you partition into tens and ones.

Partition each number into tens and ones

$$37 = 30 + 7$$

$$45 = 40 + 5$$

The sum is $37 + 45$ which = $30 + 7 + 40 + 5$

Remember that the order doesn't matter in adding – you still get the same answer. ('Commutative')
So we can change the order to put the tens together and then the ones together

The sum is $30 + 7 + 40 + 5$ which = $30 + 40 + 7 + 5$

We can add the tens to give $30 + 40 = 70$

We can add the ones to give $7 + 5 = 12$

The sum is $30 + 40 + 7 + 5$ which = $70 + 12$

Oops – we still are trying to add a number with tens to a number with only tens (70) to a number with tens and ones (12).

We can solve this problem by portioning again – we partition 12 into $10 + 2$

The sum is $70 + 12$ which is $70 + 10 + 2$

The ones are 2 – there is nothing to add

We can add the tens to give $70 + 10 = 80$

So the sum is $70 + 10 + 2$ which is $80 + 2$

This is an easy sum – you can see the total is 82

So $37 + 45 = 82$

Extra resource for addition using Dienes

Here is a video clip showing regrouping using Dienes equipment. It covers only a two digit number plus a one digit number and does this very slowly and with every detail. If you want to see every possible step you might have to explain to the child this may be helpful for you.

<https://www.youtube.com/watch?v=NmqvASX8OAY&feature=youtu.be>